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Exact Solutions of the Schrödinger Equation with
Irregular Singularity

Axel Schulze-Halberg1
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The 1D nonrelativistic Schrödinger equation possessing an irregular singular
point is investigated. We apply a general theorem about existence and structure
of solutions of linear ordinary differential equations to the Schrödinger equation
and obtain suitable ansatz functions and their asymptotic representations for a
large class of singular potentials. Using these ansatz functions, we work out all
potentials for which the irregular singularity can be removed and replaced by a
regular one. We obtain exact solutions for these potentials and present source
code for the computer algebra system Mathematica to compute the solutions. For
all cases in which the singularity cannot be weakened, we calculate the most
general potential for which the Schrödinger equation is solved by the ansatz
functions obtained and develop a method for finding exact solutions.

1. INTRODUCTION

The nonrelativistic Schrödinger equation with singular potentials has
been extensively investigated [3, 4, 9, 10, 13, 18–20] in order to obtain exact
solutions. Although fast computers provide the calculation of approximate
solutions with arbitrary precision, exact solutions can be used to test the
efficiency of numerical methods.

There are many applications of singular potentials in atomic, nuclear,
and molecular physics: magnetic resonances between massless and massive
spin-1/2 particles [2], dipole interaction between two atoms [15], the argon
interaction [16], interactions in one-electron atoms, muonic and Rydberg
atoms [6], interaction of globular molecules [7], and scattering theory [1, 5,
8, 11, 12, 17, 21].

For a summary of properties of singular potentials see ref. 14.
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In the case of singular potentials ,r22 around the singular point the
Schrödinger equation has solutions of power series type that can be shown
to converge at least locally; the Schrödinger equation with a potential of the
mentioned type is then said to have a regular singularity. If the potential is
singular, but ,r2k, k . 2, around the singular point, existence and especially
convergence of series solutions are no longer guaranteed; the Schrödinger
equation with a potential of this type is then said to have an irregular singular-
ity. Especially in molecular physics there are many applications for such
Schrödinger equations.

There are several cases in which the Schrödinger equation with irregular
singularity is exactly solved by the use of a certain ansatz function [3, 4, 18,
19]. In most of these cases the ansatz function is given and shown to work
correctly, but it is not stated how to find it.

In order to fill this gap, we apply a general theorem about the existence
and form of exact solutions of linear ordinary differential equations (ODEs)
to the Schrödinger equation (Section 3). We get results on structure and
asymptotic expansion of solutions that we use to build ansatz functions. In
Section 4 we insert these functions into the Schrödinger equation and calculate
special cases in which the irregular singularity can be replaced by a regular
one. As a consequence, exact solutions involving power series are available
that can be computed by the use of Mathematica programs, which are pre-
sented. Section 5 is devoted to the situation that a weakening of the singularity
is not possible.

We calculate the most general potential for which the Schrödinger equa-
tion is solved by ansatz functions obtained from the existence theorem. We
then develop a method to find exact solutions of the Schrödinger equation
for a given potential and give an example.

2. PRELIMINARIES

We summarize some definitions from the singularity theory of linear
ODEs; see ref. 22 for a comprehensive discussion.

2.1. Classification of Singularities

We call x 5 x0 a regular singularity of a linear second-order differen-
tial equation

f 9(x) 1 a(x) f 8(x) 1 b(x) f (x) 5 0 (1)

if a or b is not analytic at x0, but the equation can be written in the form

x2f 9(x) 1 xp(x) f 8(x) 1 q(x) f (x) 5 0 (2)

with p and q being analytic at x0.
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If (1) cannot be written in the form (2) with p and q analytic at x0, we
call x0 an irregular singularity of Eq. (1).

We call r 5 ` a regular (irregular) singularity of Eq. (1) if t 5 0 is a
regular (irregular) singularity of the equation

t4g9(t) 1 12t3 2 t2p 11
t22g8(t) 1 q11

t2g(t) 5 0

which is derived from Eq. (1) by the change of variables x 5 t21, g(t) 5 f (t21).

2.2. Definition of Asymptotic Power Series

Let the function f be defined in an open subset S of the complex plane
and having x 5 x0 as an accumulation point. The power series

o
`

i50
ai xi

is said to be an asymptotic power series expansion of f as x → x0 if

lim
x→x0

x2m1f (x) 2 o
m

i50
ai xi2 5 0 ∀m $ 0

We then write

f(x) , o
`

i50
ai xi, x → x0, x P S

2.3. The Schrödinger Equation

We investigate the nonrelativistic one-dimensional reduced radial Schröd-
inger equation given by

f9(x) 1 (E 2 V(x))f(x) 5 0, x $ 0 (3)

making the following assumptions:
(a) We use atomic units, that is, " 5 2m 5 1.
(b) The effective potential V can be written in the form

V(x) 5 o
iPI

vi x2i

with a finite index set I fulfilling I , R+, max(I ) 5 h, and 1 1 (h/2) P I.
The vi are real-valued numbers. We further assume vh . 0 to guarantee the
uniqueness of bound-state energy levels [14]. We take h . 2: as can be easily
verified from the definition given above, Eq. (3) always possesses an irregular
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singularity at infinity and additionally in the case h . 2 an irregular singularity
at zero.

3. APPLICATION OF AN EXISTENCE THEOREM

In this section we apply the following existence theorem to Eq. (3). The
theorem and proof can be found, for example, in ref. 23.

Theorem. Let S be an open sector of the complex plane with vertex at
the origin and positive central angle not exceeding p/(q 1 1), q . 1. Let A
be an n by n matrix function holomorphic in S and admitting there an
asymptotic power series expansion

A(x) , o
`

i50
Ai x21, x → `, x P S

Assume that all eigenvalues li (2 # i # n) of A0 are distinct. Then the
differential equation

x2qY 8(x) 5 A(x)Y(x) (4)

possesses a fundamental matrix solution of the form

Y(x) 5 Ŷ(x)xD exp(Q(x)) (5)

Here Q is a diagonal matrix whose diagonal elements are polynomials of
degree q 1 1. The leading term of Q is

xq11

q 1 1
diag(l1, . . . , ln)

The matrix D is diagonal and constant with respect to x and the matrix Ŷ (x)
has in S an asymptotic expansion

Ŷ(x) , o
`

i50
Ŷi x2i, x → `, x P S

where the leading matrix Ŷ0 is nonsingular.

In order to apply the existence theorem to (3), we first write (3) in
vectorial form. We get

›
f 8(x) 5 1 0 1

V(x) 2 E 02 ›
f (x)

By multiplication with xh the form of the latter equation becomes similar to
the form of (4):
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xh ›
f 8(x) 5 1 0 xh

xh(V(x) 2 E ) 02 ›
f (x) (6)

Furthermore, all entries of the coefficient matrix are now holomorphic at
x 5 0, since the lowest power occurring in V is given by 2h.

The existence theorem requires a holomorphic coefficient matrix at x
5 ` and a negative power of the independent variable on the left side of
(4); to fulfill both conditions we transform (6) by means of

x 5 z21,
›

c (z) 5
›

f (z21) (7)

and get the equation

z22h ›
c 8(z) 5 1 0 2z2h

z2h(E 2 V(z21)) 0 2 ›
c (z) (8)

We see that the coefficient matrix of the latter equation is holomorphic at
infinity, so it admits there an asymptotic power series expansion. The leading
matrix is given by

lim
z→`1 0 2z2h

z2h(E 2 V(z21)) 0 2 5 1 0 0
2vh 02

The only eigenvalue of the leading matrix is zero, so we cannot apply the
existence theorem to Eq. (8). Instead we have to perform a few transformations
on (8) in order to get a coefficient matrix with distinct eigenvalues; the
general form of these transformations is given in ref. 23; therefore we do
not explain what particular idea is behind each of them.

The first step is to transform (8) in such a way that the leading matrix
of the expansion of the coefficient matrix has Jordan canonical form (JCF).
To this end, we set

›
c (z) 5 1 0 1

2vh 02 ›
C (z) (9)

and compute the transformed equation:

z22h ›
C 8(z) 5 1 0 (1/vh)z2h(V(z21) 2 E )

vhz2h 0 2 ›
C (z) (10)

Indeed we find that the leading matrix now has JCF:

lim
z→`1 0 (1/vh)z2h(V(z21) 2 E )

vhz2h 0 2 5 10 1
0 02

The latter matrix still has only the eigenvalue zero. To change this, we need
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two further transformations. The first one guarantees that the transformed
leading matrix has the same entry above the main diagonal as the original
one has and that it has at least one nonzero entry on or below the main
diagonal. The following so-called shearing transformation

›
C (z) 5 11 0

0 z2h/22 ›
x (z) (11)

takes Eq. (10) into

z22h ›
x 8(z) 5 1 0 (1/vh)z23/2h(V(z21) 2 E )

vhz2h/2 (h/2)z12h 2 ›
x (z)

Note that the choice of the exponent of z in the shearing transformation is
not trivial [23].

Now we perform the last transformation in order to make the leading
matrix possess two distinct eigenvalues. We set

z 5 22/(22h)t2,
›

F (t) 5
›

x (22/(22h)t2) (12)

and setting further V̂(t) 5 V(222/(22h)t22), we arrive at the equation

t32h ›
F8 (t) 5 10 (1/vh)222h/(22h)(V̂(t) 2 E )

vh ht22h 2 ›
F (t) (13)

Now the leading matrix is given by

lim
t→`10 (1/vh)222h/(22h)t22h(V̂(t) 2 E )

vh ht22h 2 5 10 1
vh 02 (14)

with two distinct eigenvalues 6!vh.
We are now ready to apply the existence theorem to Eq. (13); let C

denote the coefficient matrix of (13).
1. The matrix C is obviously holomorphic, since all entries are. Further-

more, it possesses the following inverse power series expansion that is
obtained by inserting the definition of V̂ into C:

C(t) 5 10 (1/vh)22h/(22h)(t22h1oiPI
vi22i/(22h)t2i 2 E2

vh ht22h
2

5 10 o
iPI

((vi /vh)22(i2h)/(22h)t 2(i2h)) 2 (1/vh)222h/(22h)ET 22h

vh ht22h
2
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5 o
iPIø{0}

Qit2(i2h) (15)

where

Ci 5 51
0 (vi /vh)22(i2h)/(22h)t 2(i2h)

0 0 2 if i P I \H1 1
h
2J

10 2(1/vh)222h/(22h)Et22h

vh 0 2 if i 5 0

10 (v11h/2 /vh)2t22h

0 h 2 if i 5 1 1
h
2

Since max(I ) 5 h, the series (15) is of pure inverse power type. Observe
that (15) represents C not only asymptotically, but exactly.

2. By comparison of Eqs. (13) and (4) we see that

q 5 h 2 3

3. As already seen, the eigenvalues of the leading matrix Ch given in
(14) are distinct.

The existence theorem is now applicable. We get existence of a solution
of Eq. (13) with the following properties:

1. The solution is defined in any open sector S with central angle less
than p/(h 2 2).

2. The solution is of the form (5), that is,
›

F (t) 5
›

F̂ (t) tD exp(Q(t)) (16)

where

›
F̂ (t) , o

`

i50

›
w it2i, t → `, t P S

D 5 diag(d1, d2) (17)

Q(t) 5 diag 1o
h23

i50
ai t2i 1

!vhth22

h 2 2
, o

h23

i50
bi t2i 2

!vh th22

h 2 2 2
Using these settings, we can specify tD and exp(Q(t)):

tD 5 diag (td1, td2)

exp(Q(t)) 5 diag1exp1o
h23

i50
ai t2i 1

!vhth22

h 2 2 2, exp1o
h23

i50
bit2i 2

!vhth22

h 2 2 22.
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Since we now know the structure of solutions of (13), we want to get from
(16) an ansatz for solutions of the original equation (3). To this end, we have
to transform the function

›
F back into

›
f , that is, we have to apply the inverse

of all transformations performed above on
›

F . More explicitly, we have to
do the following:

1. Inverse coordinate transformation (12):

t 5 !22/(h22)z,
›

x (z) 5
›

F (!22/(h22)z)

2. Inverse shearing transformation (11) and inverse transformation (9):

›
c (z) 5 1 0 1

2vh 02 11 0
0 z2h/22 ›

x (z)

3. Inverse coordinate transformation (7):

z 5 x21,
›

f (x) 5
›

c (x21)

Doing these transformations, we obtain the following expression for
›

f :
›

f (x) 5
›

F̂ (21/(h22)x21/2)

3 F2d2/(h22) exp1o
h23

i50
bi(2i/(h22)x2i/2) 2

2x(22h)/2!vh

h 2 2 2x(h2d2)/2,

vh2d1/(h22) exp1o
h23

i50
ai(2i/(h22)x2i/2) 1

2x(22h)/2!vh

h 2 2 2x2d1/2G (18)

where
›

F̂ possesses an asymptotic expansion of the form

›
F̂ (x) , o

`

i50

›
w i2i/(22h)xi/2, x → 0 (19)

valid in the transformed set Ŝ 5 21/(h22) S21/2, where S denotes the sector in
which (17) holds.

For completeness let us briefly describe the shape of Ŝ. Using polar
coordinates we find for x 5 Rx exp(iwx) P S and integer k

21/(h22) z21/2 5 21/h22 (Rx exp (i(wx 1 2kp)))21/2

5 21/h22R21/2
x exp1i12

w
2

2 kp22
meaning that
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(0, `) { Rx ° R21/2
x P (0, `)

10,
p

h 2 22 { wx ° 5 2
wx

2
P 12

p
2h 2 4

, 02 if k 5 0 1 2N0

2
wx

2
2 p P 12p, 2

p(2h 2 3)
2h 2 4 2 if k 5 1 1 2N0

that is, the sector S loses one half of its original angle and is mirrored at the
real axis and rotated by p (only if k 5 1).

4. REDUCTION TO REGULAR SINGULARITY CASE

Since by (18) we know the structure of solutions of (3), we can build
ansatz functions possessing that structure. We insert the first component of
(18) as an ansatz function into the Schrödinger equation (3) and have to
determine the unknown function

›
F̂ . At first we do not make use of the

known asymptotic expansion (19), but assume
›

F̂ to be completely unknown.
Denoting the first component of

›
F̂ by F̂, d2 by d, inserting the first component

of (18) into (3), and collecting terms, we obtain the following equation for F̂ :

F̂9(x)x2

1 F̂8(x)x1x3/2121/(h22)3 1 2121/(h22)d 2 2121/(h22)h2
1 x5/22221/(h22)1o

h23

i50

ihi

2
22i/(2h24)x2i/2212 2 x(52h)/2212(h13)/(h22)!vh2

1 F̂(x)(x3(2122/(h22)d 1 d222/(22h) 2 2122/(h22)h 2 2122/(h22)dh 1 h222/(22h))

1 x412222/(h22)(d 2 h)1o
h23

i50

ihi

2
22i/(2h24)x2i/2 2 12

2 212h14/(h22)d!vhx2h/2 1 2h24/(h22)h!vhx2h/22
1 x512222/(h22)(E 2 V(x) 1 1)1o

h23

i50

bi

2
22i/(2h24)(2i)12

i
2

2 12x2i/2 2 22
1 2222/(h22)1o

h23

i50

ibi

2
22i/(2h24)x2(i/2)212

2

2 222(h14)/(h22)1o
h23

i50

ihi

2
22i/(2h24)x2i/2212!vhx2b/2 1 (226/(h22) 1 2h/(h22)vh)x2h2 5 0
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Our aim is to find potential V and parameters h . 2, d, and ci such that x 5
0 is a regular singularity for the latter equation. We then know that there are
solutions for F̂ admitting locally convergent series expansions [23]. First we
restrict consideration to the case h 5 3, meaning that all sums in (20) running
to h 2 3 contain only one term.

4.1. The Case h 5 3

According to Section 2, the lowest power occurring in the potential V
is given by 2h 5 23. Simplifying Eq. (20) by setting h 5 3 yields the equation

x2F̂9(x) 1 11d 2
3
22x3/2 2 2x!v32xF̂8(x)

1 113
4

2 d 1
d 2

4 2x3 1 (E 2 V(x))x5

1 x5/2!v313
2

2 d2 1 x2v32F̂(x) 5 0 (20)

For zero being a regular singular point, we require the bracketed parts of the
coefficients of F̂8 and F̂ to be analytic, meaning that the roots have to be
removed. This is done by choosing d 5 3/2, which leads to the equation

x2F̂9(x) 2 (2x!v3)xF̂8(x)

1 12
3
16

x3 1 (E 2 V(x))x5 1 x2v32F̂(x) 5 0 (21)

We see that the latter equation has zero as a regular singular point provided
the potential V does not involve nonanalytic terms, which we assume in
what follows.

We infer that (21) possesses solutions of the form

F̂(x) 5 o
`

i50
ci xi1s (22)

where the exponents at the regular singularity zero are determined by the
indicial equation, which reads

s(s 2 1) 5 0

The exponents are thus given by

s 5 0, s 5 1

Taking the larger one, we set s 5 1 and insert the power series (22) into Eq.
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(21). We are now ready to obtain the expansion coefficients ci by computing
a recurrence formula for the ci in the usual way. Since calculating of a few
of these coefficients and presenting them here does not lead to new insights,
we instead give the source of a computer program for Mathematica that
performs the required calculations (see Fig. 1).

Description of the Program. We name the input and output variables
used in the program; the rest is obvious.

Input:
• f [x]: The function F̂ to calculate; this should not be changed.
• p: Desired expansion order of F̂; may be changed.

Fig. 1. Computer program for calculating F̂ for the case h 5 3.
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• pot: The potential V; may be changed, but should not contain nonana-
lytic terms.

• eq: Eq. (21); should not be changed.
Output:
• solution: The function F̂, expanded up to order p.
• ps[i]: The expansion coefficients of F̂, depending only on the first of

them, ps[0]; The index i runs from 0 to p.

A generalization. There is a generalization of the results obtained in the
previous paragraph. Until now we have assumed that V is of the form given
in Section 2 with lowest power 2h 5 23. Now we drop this assumption.
We then see that the coefficient of F̂ in (21) is analytic at zero even if V
contains terms ,x25. In particular, there are solutions of (21) of the form
(22) if V (x)x5 is analytic at zero.

To obtain these solutions, one has to insert the ansatz (22) into Eq. (21).
Note that the indicial equation and the exponents may change; for example,
picking the inverse power potential

V(x) 5 o
5

i50
vi x2i

one is led to the indicial equation

s2 2 s 2 v5 5 0

with solutions

s 5
1
2

(1 1 !1 1 4v5)

Taking the larger one, that is, s 5 1–2 (1 1 !1 1 4v5), we can use the modified
version of the above program to compute the solutions (see Fig. 2). The
inputs and outputs of the program are the same as of the first one.

4.2. The Case h . 3

We return to the general equation (20); in particular, we examine the
bracketed coefficients of F̂ and F̂8 in order to find out how to choose the
free parameters to convert the irregular singularity at zero into a regular one
if h . 3.

From (20), in particular from the coefficient of F̂8, we see that we need
analyticity at zero of the expression
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Fig. 2. Computer program for calculating F̂ for the case h 5 3 for a more general potential.
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x3/2(21/(h22)3 1 2121/(h22)d 2 2121/(h22)h)

1 x5/22221/(h22)1o
h23

i50

ibi

2
22i/(2h24)x2i/2212 2 x52h/2211(h23)/(h22)!vh (23)

The latter expression contains the following powers of x:

3
2

,
5 2 h

2
,

3 2 i
2

(0 # i # h 2 3) (24)

The set of powers given by the third expression in (24) reads explicitly

3 2 i
2

P H1,
1
2

, 0, 2
1
2

, 21, . . . ,
6 2 h

2 J (25)

where the power belonging to i 5 0 vanishes due to the i contained in the
expansion coefficient [see (23)].

The powers given by the expressions in (24) are distinct:

5 2 h
2

0
3 2 i

2
⇒ i 5 h 2 2

which is impossible, since i # h 2 3. Furthermore, the coefficient of x3/2

has to vanish, that is,

21/(h22) 3 1 2121/(h22) d 2 2121/(h22) h 5 0 ⇒ d 5 h 2
3
2

So we have to require

5 2 h
2

P N0 ⇒ h 5 5

In the case h 5 5 and d 5 h 2 3–2 5 7–2 , expression (23) simplifies to

2b1x 1 4b221/3x1/2 2 2!v522/3

and clearly we have to set

b2 5 0

Using these settings, we simplify the coefficient of F̂ in (20):

2
3

22/312 x3 1 21/311(E 2 V(x))x5 1 b1
2x2 2 21/311!v5x3/2

2 22/311b1!v5x 1 21/311v5

The only nonanalytic term contained in the latter expression is x3/2 provided
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the potential contributes only analytic terms. Since the coefficient of x3/2

never vanishes, we have to require the potential to contain a term ,x27/2

(note that we needed this condition already in a more general context: in
Section 2.3 we assumed the index set I to contain the number 1 1 b/2.) We
then get the following relation:

v7/2 1 !v5 5 0

Altogether we get that all potentials V possessing the form

V(x) 5 2 !v5 x27/2 1 V̂(x)

where V̂ (x)x5 is analytic at zero, admit exact solutions of (20) that are of
the form (22). To obtain these solutions, as in the case h 5 3, we insert the
ansatz (22) into Eq. (20), which now reads

x2F̂9(x) 1 (2b1x 2 2!v522/3)xF̂8(x)

1 12
3

22/312 x3 1 21/311(E 2 V(x))x5

1 b1
2x2 2 22/311b1!v5x 1 21/311v52F̂ 5 0

The indicial equation is given by

s(s 2 1 2 22/311!v5) 5 0

with solutions

s 5 0, s 5 1 1 22/311!v5

Figure 3 shows a computer program that calculates F̂; the inputs and outputs
are mostly the same as in the case h 5 3, (see Figs. 1 and 2).

There are no more cases left in which the irregular singularity at zero
can be transformed into a regular one.

5. ANALYSIS OF THE GENERAL POTENTIAL

If the irregular singularity can not be weakened, it does not make sense
to insert an ansatz of power series type into (20) in order to obtain solutions.
Instead, we solve (20) for the shifted potential V 2 E and solve the most
general potential equation (20) by the ansatz functions built from the existence
theorem. This general potential is given in terms of F̂, its derivatives, and
a few parameters. The problem to solve is: Given a certain potential that is
a special case of the general potential, what is the correct choice of F̂ and
the parameters to reduce the general potential to the special case?
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Fig. 3. Computer program for calculating F̂ for the case h 5 5.
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As one can see from (20), the expression for the general potential is
rather lengthy and is given by

V(x) 2 E 5 4(11h)/(22h)x29/(22h)(2(41h)/(h22) dx5/21h

1 641/(h22) d 2x5/21h 2 2(41h)/(h22) hx5/21h

2 2(41h)/(h22) dhx5/21h 1 641/(h22) h2x5/21h

1 22(11h)/(h22)x9/21h o
h23

i50
bi12

i
22

3 12
i
2

2 1222i/(2h24)x2i/222 1 22(11h)/(h22)x9/21h1o
h23

i50
bi12

i
2

22i/(2h24)

3 x2i/22122
2

1 1o
h23

i50
bi12

i
2

22i/(2h24)x2i/22122(22(11h)/(h22)(h 2 d )

3 x7/21h 1 8h/(h22)x91h/2!vh2 2 22(11h)/(h22) dx71h/2!vh 1 2(41h)/(h22)h

3 x71h/2!vh 1 22(11h)/(h22)x9/2vh2
1

F̂8(x)
F̂(x) 14h/(22h)x29/22h1(3 ? 321/(h22) 1 2(31h)/(h22)(d 2 h))x21h

1 2215/(h22)x31h o
h23

i50
bi12

i
2222i/(2h24)x2i/221 2 2(2h11)/(h22)x61h/2!vh22

1
F̂9(x)
F̂(x) 122212/(h22)

x3 2 (26)

We see that the latter expression splits into three parts: the first part contains
only terms independent of F̂, the second part depends on F̂8/F̂, and the third
part depends on F̂9/F̂. Due to the length of (26) it does not make sense to
analyze it without some knowledge of F̂. So we will work out strategies for
choosing F̂ in order to obtain from (26) a particular type of potential.

To this end, let us analyze the first part, which contains the following
negative powers of x:

22, 2
i
2

2 2 (0 # i # h 2 3), 2
i
2

2 2 (0 # i #2h 2 6)
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2
h
2

2 1, 2
i 1 h

2
2 1 (0 # i # h 2 3), 2 h

All these powers are negative, so the simplest choice F̂(x) 5 const is not
possible since parts two and three of (26) then vanish, but we need a constant
term in (26) due to E Þ 0.

The calculation of F̂ can be done in the following simple way. According
to the potential one wants to construct from (26), one requires the second
part of (26) to equal a certain function, say q. Denote by p the coefficient
of F̂8(x)/F̂(x) in the second part of (26); then the condition reads

p(x)
F̂8(x)
F(x)

5
!

q(x)

⇒ F̂8(x)

F̂(x)
5

q(x)
p(x)

⇒ F̂(x) 5 exp1# q(x)
p(x)

dx2 (27)

If the function q is not too complicated or transcendent, the latter integral
can be computed symbolically. If a direct symbolical calculation is not possi-
ble, one should expand the expression a/p into a power series which clearly
is symbolically integrable. Observe that a numerical computation of the
integral is always possible, but in this context senseless, since the parameters
b1, d,. . . are not known and cannot be set to certain values without determining
the whole potential.

Now assume that F̂ solves (27). The third part of (26) then contributes
the following:

F̂9(x)

F̂(x) 122212/h22

x3 2 5 11q(x)
p(x)2

2

1
q8(x)p(x) 2 q(x)p8 (x)

p2(x) 2 122212/(h22)

x3 2 (28)

Altogether we have obtained the following: The function F̂ as given in (27)
solves Eq. (20) for the shifted potential

V(x) 2 E 5 r(x) 1 q(x)

1 11q(x)
p(x)2

2

1
q8(x)p(x) 2 q(x)p8 (x)

p2(x) 2 122212/(h22)

x3 2
where r denotes the first part of (26), q is an arbitrary function, and p is the
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coefficient of F̂8/F̂ (26). Observe that either q or the third term in the latter
expression must involve a constant term that can be identified with 2E.

Example. We consider the case h 5 7, bi 5 0 (1 # i # 4). The constants
bi are set to zero because otherwise the expressions involved become too
long to be included here. The potential (26) then simplifies to

V(x) 2 E 5
35/4 2 3d 1 d 2/4

x2 1
!v7(7/2 2 d )

x9/2 1
v7

x7

1
F̂8(x)

F̂(x) 12211/(4/511) 1 d ? 224/5

x5/2 2 1
F̂9(x)

F̂(x)23/511x3
(29)

Now we require the second part, that is, the coefficient of F̂8/F̂, to equal a
constant C that is identified with the energy E. Using the notation defined
above, we now have

q(x) 5 C

p(x) 5 2211/(4/511) 1
d ? 224/5

x5/2

According to formula (27), we obtain after simplification

F̂(t) 5 exp1# 24/511Cx5

(211 1 2d )x5/2 2 4 !v7

dx2 (30)

The latter integral can symbolically be found, for example, using Mathematica
or any other computer algebra system; unfortunately, the result is definitely
too large to be displayed here. As explained above, we can use a power
series expansion. We expand the second part of the potential (29) into a
power series about zero. This yields

24/5 11Cx5

(211 1 2d )x5/2 2 4 !v7

5 2o
`

i50

C(2d 2 11)i

4i21/5v(i11)/2
7

x(1015i)/2

Inserting the latter expression into the integral, we can compute the solution:

F̂(x) 5 exp12# o
`

i50

C(2d 2 11)i

4i21/5v(i11)/2
7

x(1015i)/2 dx2
5 exp12 o

`

i50

C(2d 2 11)i

4i21/5v(i11)/2
7

#x(1015i)/2 dx2
5 exp12 o

`

i50

C(2d 2 11)i(12 1 5i)
4i21/5v(i11)/2

7 (10 1 5i)
x(1215i)/22 (31)
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Observe that the factor 221/5 corresponds to the factor 2i/(22h) contained in
the asymptotic expansion (19): Expansion of (31) into a Taylor series at zero
generates terms , 2i/(22h) 5 22i/5.

The third part of (29), given by (28), simplifies to

1 C2

p2(x)
2

Cp8(x)
p2(x) 2 1228/5

x2 2
that is, more explicitly,

Cx(5?21/5(211 1 2d ) x5/2 1 8 Cx6 2 40 ? 21/5 !v7)

2((211 1 2d )x5/2 2 4!v7)2
(32)

Altogether we have found that if F̂ is given by (30), respectively (31), then
it solves Eq. (20) for the shifted potential

V(x) 2 E 5
35/4 2 3d 1 d 2/4

x2 1
!v7(7/2 2 d )

x9/2 1
v7

x7

1 C 1
Cx(5 ? 21/5(211 1 2d )x5/2 1 8Cx6 2 40 ? 21/5 !v7)

2((211 1 2d )x5/2 2 4 !v7)2

Energy eigenvalues are obtained by conditions on the third part of the lat-
ter potential.

A natural way of using the described method is the following. Given a
certain potential, one chooses a function q and calculates the contribution of
the third part of (26), given by (28); observe that knowledge about F̂ is not
necessary to do this. If the terms (28) are not suitable, one chooses another
q and so on, until (28) is acceptable. Then one tries to find F̂ by direct
integration; see (27). If this fails, one expands q/p into a power series and
thereafter uses integration. If no closed expression as in the example can be
found, at least expansion up to arbitrary order is possible.

Clearly all calculations should be carried out using a computer alge-
bra system.
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